Name: Ch'ng Yit Seong
Number Matric: 20102040442
Topic: Matter

Saturday, 26 November 2011

The Changing State

Evaporation
Sometimes a liquid can be sitting in one place (maybe a puddle) and its molecules will become a gas. That's the process called evaporation. It can happen when liquids are cold or when they are warm. It happens more often with warmer liquids. Evaporation is all about the energy in individual molecules, not about the average energy of a system. The average energy can be low and the evaporation still continues.

You might be wondering how that can happen when the temperature is low. It turns out that all liquids can evaporate at room temperature and normal air pressure. Evaporation happens when atoms or molecules escape from the liquid and turn into a vapor. Not all of the molecules in a liquid actually have the same energy.

The energy you can measure with a thermometer is really an average of all the molecules in the system. There are always a few molecules with a lot of energy and some with barely any energy at all. The molecules with a lot of energy are able to build up enough power to become a gas. Once they reach that energy level, they can leave the liquid. When the molecule leaves, it has evaporated.

The rate of evaporation can also increase with a decrease in the gas pressure around a liquid. Molecules like to move from areas of higher pressure to lower pressure. The molecules are basically sucked into the surrounding area to even out the pressure. Once the vapor pressure of the area increases to a specific level, the rate of evaporation will slow down.



Freezing

Freezing or solidification is a phase change in which a liquid turns into a solid when its temperature is lowered below its freezing point. The reverse process is melting.

All known liquids, except liquid helium, freeze when the temperature is lowered enough. Liquid helium remains liquid at atmospheric pressure even at absolute zero, and can be solidified only under pressure. For most substances, the melting and freezing points are the same temperature; however, certain substances possess differing solid–liquid transition temperatures. For example, agar displays a hysteresis in its melting and freezing temperatures. It melts at 85 °C (185 °F) and solidifies from 31 °C to 40 °C (89.6 °F to 104 °F).



Sublimation
Sublimation is the process of transition of a substance from the solid phase to the gas phase without passing through an intermediate liquid phase (can also occur in opposite order, such as in Hoar frost). Sublimation is an endothermic phase transition that occurs at temperatures and pressures below a substance's triple point in its phase diagram.

At normal pressures, most chemical compounds and elements possess three different states at different temperatures. In these cases, the transition from the solid to the gaseous state requires an intermediate liquid state. Note, however, that the pressure referred to here is the partial pressure of the substance, not the total (e.g., atmospheric) pressure of the entire system. So, all solids that possess an appreciable vapor pressure at a certain temperature usually can sublime in air (e.g., ice just below 0°C). For some substances, such as carbon and arsenic, sublimation is much easier than evaporation from the melt, because the pressure of their triple point is very high, and it is difficult to obtain them as liquids.

Sublimation requires additional energy and is an endothermic change. The enthalpy of sublimation (also called heat of sublimation) can be calculated as the enthalpy of fusion plus the enthalpy of vaporization. The reverse process of sublimation is deposition. The formation of frost is an example of meteorological deposition.


Melting
Melting, or fusion, is a physical process that results in the phase change of a substance from a solid to a liquid. The internal energy of a substance is increased, typically by the application of heat or pressure, resulting in a rise of its temperature to the melting point, at which the rigid ordering of molecular entities in the solid breaks down to a less-ordered state and the solid liquefies. An object that has melted completely is molten. Substances in the molten state generally have reduced viscosity with elevated temperature; an exception to this maxim is the element sulfur, whose viscosity increases with higher temperatures in its molten state.
Some organic compounds melt through mesophases, states of partial order between solid and liquid.



Condensation
Condensation is the change of the physical state of matter from gaseous phase into liquid phase, and is the reverse of vaporization. When the transition happens from the gaseous phase into the solid phase directly, the change is called deposition.
Condensation is initiated by the formation of atomic/molecular clusters of that species within its gaseous volume—like rain drop or snow-flake formation within clouds—or at the contact between such gaseous phase and a (solvent) liquid or solid surface.
A few distinct reversibility scenarios emerge here with respect to the nature of the surface.
  • absorption into the surface of a liquid (either of the same species or one of its solvents)—is reversible as evaporation.

  • adsorption (as dew droplets) onto solid surface at pressures and temperatures higher than the specie's triple point—also reversible as evaporation.

  • adsorption onto solid surface (as supplemental layers of solid) at pressures and temperatures lower than the specie's triple point—is reversible as sublimation.

Condensation commonly occurs when a vapour is cooled and/or compressed to its saturation limit when the molecular density in the gas phase reaches its maximal threshold. Vapour cooling and compressing equipment that collects condensed liquids is called "condenser".

Psychrometry measures the rates of condensation from and evaporation into the air moisture at various atmospheric pressures and temperatures. Water is the product of its vapour condensation—condensation is the process of such phase conversion.

Forms of Matter

Solid Basics
So what is a solid? Solids are usually hard because their molecules have been packed together. The closer your molecules are, the harder you are. Solids also can hold their own shape. A rock will always look like a rock unless something happens to it. The same goes for a diamond. Even when you grind up a solid into a powder, you will see little tiny pieces of that solid under a microscope. Liquids will move and fill up any container. Solids like their shape.

In the same way that a solid holds its shape, the atoms inside of a solid are not allowed to move around too much. This is one of the physical characteristics of solids. Atoms and molecules in liquids and gases are bouncing and floating around, free to move where they want. The molecules in a solid are stuck. The atoms still spin and the electrons fly around, but the entire atom will not change position.

Solids can be made up of many things. They can have pure elements or a variety of compounds inside. When you get more than one type of compound in a solid it is called a mixture. Most rocks are mixtures of many different compounds. Concrete is a good example of a manmade mixture.
Liquid Basics
The second state of matter we will discuss is a liquid. Solids are hard things you can hold. Gases are floating around you and in bubbles. What is a liquid? Water is a liquid. Your blood is a liquid. Liquids are an in-between state of matter. They can be found in between the solid and gas states. They don't have to be made up of the same compounds. If you have a variety of materials in a liquid, it is called a solution.

One characteristic of a liquid is that it will fill up the shape of a container. If you pour some water in a cup, it will fill up the bottom of the cup first and then fill the rest. The water will also take the shape of the cup. It fills the bottom first because of gravity. The top part of a liquid will usually have a flat surface. That flat surface is because of gravity too. Putting an ice cube (solid) into a cup will leave you with a cube in the middle of the cup; the shape won't change until the ice becomes a liquid.

Another trait of liquids is that they are difficult to compress. When you compress something, you take a certain amount and force it into a smaller space. Solids are very difficult to compress and gases are very easy. Liquids are in the middle but tend to be difficult. When you compress something, you force the atoms closer together. When pressure go up, substances are compressed. Liquids already have their atoms close together, so they are hard to compress. Many shock absorbers in cars compress liquids in tubes.

A special force keeps liquids together. Solids are stuck together and you have to force them apart. Gases bounce everywhere and they try to spread themselves out. Liquids actually want to stick together. There will always be the occasional evaporation where extra energy gets a molecule excited and the molecule leaves the system. Overall, liquids have cohesive (sticky) forces at work that hold the molecules together.
Gas Basics
Gas is everywhere. There is something called the atmosphere. That's a big layer of gas that surrounds the Earth. Gases are random groups of atoms. In solids, atoms and molecules are compact and close together. Liquids have atoms a little more spread out. However, gases are really spread out and the atoms and molecules are full of energy. They are bouncing around constantly.

Gases can fill a container of any size or shape. That is one of their physical characteristics. Think about a balloon. No matter what shape you make the balloon it will be evenly filled with the gas atoms. The atoms and molecules are spread equally throughout the entire balloon. Liquids can only fill the bottom of the container while gases can fill it entirely.

You might hear the term vapor. Vapor and gas mean the same thing. The word vapor is used to describe gases that are usually found as liquids. Good examples are water or mercury (Hg). Compounds like carbon dioxide are usually gases at room temperature so scientists will rarely talk about carbon dioxide vapor. Water and mercury are liquids at room temperature so they get the vapor title.

Gases hold huge amounts of energy, and their molecules are spread out as much as possible. With very little pressure, when compared to liquids and solids, those molecules can be compressed. It happens all of the time. Combinations of pressure and decreasing temperature force gases into tubes that we use every day. You might see compressed air in a spray bottle or feel the carbon dioxide rush out of a can of soda. Those are both examples of gas forced into a space smaller than it would want, and the gas escapes the first chance it gets.

Changing States of Matter




 All matter can move from one state to another. It may require very low temperatures or very high pressures, but it can be done. Phase changes happen when certain points are reached. Sometimes a liquid wants to become a solid. Scientists use something called a freezing point to measure when that liquid turns into a solid. There are physical effects that can change the freezing point. Pressure is one of those effects. When the pressure surrounding a substance goes up, the freezing point also goes up. That means it's easier to freeze the substance at higher pressures. When it gets colder, most solids shrink in size. There are a few which expand but most shrink.

Now you're a solid. You're a cube of ice sitting on a counter. You dream of becoming liquid water. You need some energy. Atoms in a liquid have more energy than the atoms in a solid. The easiest energy around is probably heat. There is a magic temperature for every substance called the melting point. When a solid reaches the temperature of its melting point it can become a liquid. For water the temperature has to be a little over zero degrees Celsius. If you were salt, sugar, or wood your melting point would be higher than water.

The reverse is true if you are a gas. You need to lose some energy from your very excited gas atoms. The easy answer is to lower the surrounding temperature. When the temperature drops, energy will be sucked out of your gas atoms. When you reach the temperature of the condensation point, you become a liquid. If you were the steam of a boiling pot of water and you hit the wall, the wall would be so cool that you would quickly become a liquid.

States of Matter

There are three main states of matter. Solids, liquids, gases and Bose-Einstein condensates are all different states of matter. Each of these states is also known as a phase. Elements and compounds can move from one phase to another phase when special physical forces are present. One example of those forces is temperature. The phase or state of matter can change when the temperature changes. Generally, as the temperature rises, matter moves to a more active state.
Phase describes a physical state of matter. The key word to notice is physical. Things only move from one phase to another by physical means. If energy is added (like increasing the temperature or increasing pressure) or if energy is taken away (like freezing something or decreasing pressure) you have created a physical change.
One compound or element can move from phase to phase, but still be the same substance. You can see water vapor over a boiling pot of water. That vapor (or gas) can condense and become a drop of water. If you put that drop in the freezer, it would become a solid. No matter what phase it was in, it was always water. It always had the same chemical properties. On the other hand, a chemical change would change the way the water acted, eventually making it not water, but something completely new.

Introduction

Matter is the Stuff Around You

Matter is everything around you. Matter is anything made of atoms and molecules. Matter is anything that has a mass. Matter is also related to light and electromagnetic radiation. Even though matter can be found all over the universe, you usually find it in just a few forms. As of 1995, scientists have identified five states of matter. They may discover one more by the time you get old.

You should know about solids, liquids, gases, plasmas, and a new one called Bose-Einstein condensates. The first four have been around a long time. The scientists who worked with the Bose-Einstein condensate received a Nobel Prize for their work in 1995. But what makes a state of matter? It's about the physical state of molecules and atoms.